Structural complexity of a composite amyloid fibril.

نویسندگان

  • Józef R Lewandowski
  • Patrick C A van der Wel
  • Mike Rigney
  • Nikolaus Grigorieff
  • Robert G Griffin
چکیده

The molecular structure of amyloid fibrils and the mechanism of their formation are of substantial medical and biological importance, but present an ongoing experimental and computational challenge. An early high-resolution view of amyloid-like structure was obtained on amyloid-like crystals of a small fragment of the yeast prion protein Sup35p: the peptide GNNQQNY. As GNNQQNY also forms amyloid-like fibrils under similar conditions, it has been theorized that the crystal's structural features are shared by the fibrils. Here we apply magic-angle-spinning (MAS) NMR to examine the structure and dynamics of these fibrils. Previously multiple NMR signals were observed for such samples, seemingly consistent with the presence of polymorphic fibrils. Here we demonstrate that peptides with these three distinct conformations instead assemble together into composite protofilaments. Electron microscopy (EM) of the ribbon-like fibrils indicates that these protofilaments combine in differing ways to form striations of variable widths, presenting another level of structural complexity. Structural and dynamic NMR data reveal the presence of highly restricted side-chain conformations involved in interfaces between differently structured peptides, likely comprising interdigitated steric zippers. We outline molecular interfaces that are consistent with the observed EM and NMR data. The rigid and uniform structure of the GNNQQNY crystals is found to contrast distinctly with the more complex structural and dynamic nature of these "composite" amyloid fibrils. These results provide insight into the fibril-crystal distinction and also indicate a necessary caution with respect to the extrapolation of crystal structures to the study of fibril structure and formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does Long-Term Administration of a Beta-Blocker (Timolol) Induce Fibril-Based Cataract Formation In-vivo?

Timolol is a non-selective beta-adrenergic receptor antagonist administered for treating glaucoma, heart attacks and hypertension. In the present study, we set out to determine whether or not timolol can provoke cataract formation, thus the influence of timolol on the amyloid-type aggregation of crystallin was investigated. We then provided experimental evidence of crystallin aggregation and it...

متن کامل

Preparation and study of the inhibitory effect of nano-niosomes containing essential oil from artemisia absinthium on amyloid fibril formation

Objective(s): Artemisia absinthium is an aromatic, perennial small shrub that shows multiple medical benefits, including anticancerous, neuroprotective, antifungal, hepatoprotective, antidepressant and antioxidant properties. One of the effective approaches to treat Alzheimer’s disease is targeting amyloid aggregation by antiamyloid drugs. In the current research study, an excellent grouping of...

متن کامل

Mechanisms of amyloid fibril formation by proteins

Understanding the structural heterogeneity inherent in the process of amyloid fibril formation is an important goal of protein aggregation studies. Structural heterogeneity in amyloid fibrils formed by a protein manifests itself in fibrils varying in internal structure and external appearance, and may originate from molecular level variations in the internal structure of the cross-β motif. Amyl...

متن کامل

Confinement-Induced Liquid Crystalline Transitions and Chirality Inversion in Amyloid Fibril Cholesteric Tactoids

Chirality is ubiquitous in nature and plays crucial roles in biology, medicine, physics and materials science 1–5. Understanding and controlling chirality is therefore an important research challenge with broad implications in fundamental and applied sciences. Unlike other classes of chiral colloids, such as nanocellulose or filamentous viruses, amyloid fibrils form nematic phases but appear to...

متن کامل

مطالعه فرایند فیبریل زایی انسولین رگولارو مهار آن با استفاده از ترکیبات آروماتیک

Background: The flexible structure of proteins is one important factor in the formation of ordered aggregates (amyloid fibril). This is a major problem for therapeutic proteins such as insulin. Study on the induction and inhibition of insulin fibrillation process with specific compounds such as aromatic derivatives may provide useful information about means of stabilization of protein structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 133 37  شماره 

صفحات  -

تاریخ انتشار 2011